APPLICATION OF ISOLATION SCANNER WITH SPECIAL TRANSDUCER FOR CEMENT EVALUATION IN HEAVY MUD SYSTEMS

SPE Abandonment Seminar
21st April 2015

Diana Cristancho, Indriaty Susanto, Petrophysicists Shell UK
Kamaljeet Singh, CH Logging Domain Champion, Schlumberger WL
DEFINITIONS & CAUTIONARY NOTE

Reserves: Our use of the term "reserves" in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term "resources" in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: our use of the term 'resources plays' refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as “associated companies” or “associates” and companies in which Shell has joint control are referred to as “jointly controlled entities”. In this presentation, associates and jointly controlled entities are also referred to as "equity-accounted investments". The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2013 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 6 May, 2014. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
OBJECTIVE & CONTENT

Objective

- Present an example of how new technologies enabled the evaluation of the cement profile in a difficult well environment.

Content

- Application of cement bond logs
- Case study background
- Log planning, execution and results
- Conclusions
- Q&A
APPLICATION OF CEMENT BOND LOGS

- 21 cement bond logs during operations in 2014
- 15 logs were carried out with standard ultrasonic tools
- **New technologies** were required in the following instances:
 - Requirement of solids characterisation in cutting re-injection wells
 - Evaluation of elastic cements
 - Casing thickness oversized
 - Heavy Oil Based Mud (OBM) with high solids content.
<table>
<thead>
<tr>
<th>Feature</th>
<th>USIT™ & IBC™ TM (Newer generation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement type</td>
<td>Standard Cements</td>
</tr>
<tr>
<td></td>
<td>Flexible cements/low acoustic impedance</td>
</tr>
<tr>
<td>Casing type</td>
<td>> 25% Chrome</td>
</tr>
<tr>
<td>Casing thickness</td>
<td>0.19 in</td>
</tr>
<tr>
<td></td>
<td>0.6 in</td>
</tr>
<tr>
<td></td>
<td>0.8 in</td>
</tr>
<tr>
<td>Mud weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USIT™ & IBC™ TM</td>
</tr>
<tr>
<td></td>
<td>8.4 ppg</td>
</tr>
<tr>
<td></td>
<td>11 ppg</td>
</tr>
<tr>
<td></td>
<td>17 ppg</td>
</tr>
</tbody>
</table>
Logging objectives - abandonment phase:

- Evaluate TOC and cement quality in 9 7/8in for zonal isolation
- Evaluate casing integrity, potential restrictions and determine top of solids to optimise milling operations (if required)

Impact:

Decision of whether or not milling would be required prior to setting the internal plug $$$
1. Evaluate incremental value of additional service of new generation tools

2. Simulation – tool selection/confirmation

3. Tools check/calibration at surface conditions

4. Tool calibration in the wellbore (free pipe section)

5. Job execution - main pass
OUTPUT OF NEW GENERATION TOOLS

Combines acoustic impedance measurement with flexural attenuation measurement.

Provides indications of the casing conditions – internal radius and casing thickness.

1. Flexural Attenuation

2. Acoustic impedance (Z)

Additional information: http://www.slb.com/
Simulation was carried out to demonstrate that high solids content in mud would interfere with the measurements.

The simulation suggested that:

- Good quality data cannot be acquired with standard transducers. The attenuation to the pulse-echo and flexural is high (Attenuation > 30dB).

- **Power Transducers required!**
Objective:

- Check the response of IBC-Power Tx™ in 15.1 ppg Enviromul mud system (high solids content)

Equipment required:

- IBC™ with Power Tx™
- SFT-358 pressure vessel system
- 8.625in casing – Thickness 0.315
- Water 8.34 ppg
- Enviromul 15.1 ppg (Supplied by mud provider)
RESULTS IN OBM

1. No processing flags
2. Measured ID/OD/Thickness as expected
3. SLG (solid-Liquid-Gas) map shows 100% liquid as expected

Test was done by varying signal power from 7v to 120v
Good Signal level obtained at low power of 40v
TOOL CALIBRATION IN THE WELLBORE (FREE PIPE)

1. Tool ECCE - Ok
2. No processing flags
3. Measured ID/OD/Thickness as expected
4. Flexural attenuation and acoustic impedance indicate free pipe

Raw acoustic impedance
Raw flexural attenuation
MAIN PASS – CEMENT BOND RESULTS

<table>
<thead>
<tr>
<th>Reference (ft)</th>
<th>Ultrasonic cement Evaluation</th>
<th>SLG map</th>
<th>CBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **TOS from IBC™**
- **TOC from CBL™ and IBC™**
- **TTOC – Cement report**
- **Channels**
- **Solid/cement**
- **Transition zone**
- **Free pipe**
- **13.75in**
MAIN PASS – CASING INTEGRITY

Anomaly
SUMMARY

Business application

- IBC™ with power transducer enabled the evaluation of the cement bond, casing integrity and top of solids in heavy mud weight.
- Assisted the decision of whether or not milling was required prior to setting the internal plugs.
- Allowed the optimisation of the milling times.
- De-risk abandonment decisions

Petrophysical value

- SLG map (IBC output) provided cement/solid distribution information for TOC, TOS and channelling identification. The latter is not possible with standalone acoustic tools such as CBL-VDL.
- Higher resolution of the annular solids profile reduced the uncertainty of the interpretation.
Thank you

Questions?
STEP 1. STANDARD ULTRASONIC MEASUREMENTS

- Indications of the casing condition – internal radius and casing thickness
- Acoustic impedance (Z)