ENHANCING PRODUCTION PERFORMANCE OF DUAL COMPLETION GAS LIFTED WELLS USING NOVA VENTURI ORIFICE VALVE

Presenters: Sheri Adoghe, Schlumberger; Ifeanyichukwu Ofia, Shell
Contributors: Nkilika Grace Nwadike, Amos Trost, Oton Enoto, Benjamin Obong, Hamzat Kassim, Uwem Essien (Shell).
PRESENTATION OUTLINE

- Introduction
 - Business Opportunity/Challenge
- NOVA Venturi vs Conventional Orifice
- Field Production Performance
 - System and Field Challenges
- Candidate Screening Workflow
- Field Trial
- Results
- Conclusion
About 70% of SPDC Gas lift Wells are duals equipped with conventional orifice valves.

- Gas sharing
- Inability to produce both arms of dual concurrently.
- Optimisation challenges and observed well instability.
- Deferred production approximately 9000 bopd
Nova Orifice

- Requires 10% pressure drop across orifice to achieve critical flow
- Effect of variations in tubing flow regime on is negligible

Conventional Orifice

- Requires > 40% pressure drop across orifice to achieve critical flow
- Slight variations in tubing flow regime result in unsteady injection, instability and slugging
- Turbulent flow creating pressure losses
- Large sub critical flow regime
- Gas passage is dependent on downstream pressure (40-50%)
NOVA ORIFICE VENTURI GAS LIFT VALVES

- Replace conventional orifice
- Same number of moving parts as conventional orifice
- Exclusive computer generated flow profile
- Promotes a constant-flow gas injection rate
- Allows maximum gas passage with minimal differential across the Venturi.
- Compatible with the BK and R Series latches and will fit in any existing K or M Series side pocket mandrel.
NOVA ORIFICE VENTURI - BENEFITS

- Minimizes injected gas
- Increases well stability by allowing injection gas at critical flow velocities
- Maintains constant injection rate with constant injection pressure
- Maintains the deepest point of injection
- Excellent application in dual gas lift installation
SYSTEM AND FIELD CHALLENGES

- Lift Gas Metering
- Frequent compressor trips
- Inability to produce both arms of dual concurrently
- Well slugging
- Gas cycling
- Intermittent production
Data Acquisition
Critical data: THP, CHP, Well test data

Establish Instability
Fluctuation: THP, CHP, Liquid rate, lift gas rate, CHP, Well test data

Analyze cause of instability
Poor Design, Over sized orifice, over injection

STEP 1
Data Acquisition
Critical data: THP, CHP, Well test data

STEP 2
Establish Instability
Fluctuation: THP, CHP, Liquid rate, lift gas rate, CHP, Well test data

STEP 3
Analyze cause of instability
Poor Design, Over sized orifice, over injection

STEP 4
Gas lift Design – Nova
Preliminary design using existing FG and Pressure

STEP 5
Gas lift Design – Nova
Preliminary design using existing FG and Pressure

STEP 6
Field Execution
1. Acquire new FG/BHP
2. Optimize design
3. Carryout GLVCO

Establish Subcritical flow
Pt/Pc 0.6 - 0.9

CANDIDATE SCREENING WORKFLOW
June. 17 - 18, 2014
2014 EuALF
- Well was reported to have lift gas sharing issues.
- Both strings could not produce concurrently.
- Long string was produced preferential to the short string.
- Selected for NOVA pilot trial.
- Post nodal analysis and redesign, the Orifice depth for the long string was optimized from 4577 to 3626 ft. along hole.
- The orifice depth on the short string was optimized from 4107 to 3597 ft. along hole.
WELL 0001S PERFORMANCE - PRE AND POST NOVA DEPLOYMENT

Pre NOVA Installation

Post NOVA Installation
RESULTS – WELL TEST

<table>
<thead>
<tr>
<th>Date</th>
<th>THP Psi</th>
<th>Bean 64ths</th>
<th>Liquid bbl/d</th>
<th>WC (%)</th>
<th>Oil bbl/d</th>
<th>Calculated Gas Lift Rate MMscf/d</th>
<th>GOR Scf/bbl</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT STRING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-Jan-12</td>
<td>220</td>
<td>52</td>
<td>685</td>
<td>54</td>
<td>310</td>
<td>1.7</td>
<td>737</td>
<td>Post Nova</td>
</tr>
<tr>
<td>26-Dec-11</td>
<td>221</td>
<td>52</td>
<td>683</td>
<td>52</td>
<td>322</td>
<td>1.7</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>25-Dec-11</td>
<td>221</td>
<td>52</td>
<td>666</td>
<td>52</td>
<td>315</td>
<td>1.7</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>12-Dec-11</td>
<td>121</td>
<td>52</td>
<td>259</td>
<td>52</td>
<td>122</td>
<td>1.4</td>
<td>920</td>
<td>Prior Nova</td>
</tr>
<tr>
<td>4-Nov-11</td>
<td>120</td>
<td>52</td>
<td>256</td>
<td>52</td>
<td>121</td>
<td>1.5</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>12-Oct-11</td>
<td>118</td>
<td>52</td>
<td>256</td>
<td>52</td>
<td>121</td>
<td>1.8</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>Long String</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Jan-12</td>
<td>108</td>
<td>60</td>
<td>330</td>
<td>32</td>
<td>229</td>
<td>1.2</td>
<td>375</td>
<td>Post Nova</td>
</tr>
<tr>
<td>28-Dec-11</td>
<td>108</td>
<td>60</td>
<td>342</td>
<td>32</td>
<td>231</td>
<td>1.9</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>5-Nov-11</td>
<td>108</td>
<td>60</td>
<td>343</td>
<td>28</td>
<td>244</td>
<td>1.7</td>
<td>338</td>
<td>Prior Nova</td>
</tr>
<tr>
<td>22-Oct-11</td>
<td>108</td>
<td>60</td>
<td>347</td>
<td>37</td>
<td>217</td>
<td>1.7</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>23-Aug-11</td>
<td>108</td>
<td>60</td>
<td>352</td>
<td>44</td>
<td>196</td>
<td>1.7</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS – WELL 0001S

PRODUCTION PROFILE

Pre NOVATM installation Post NOVATM installation

Cumulative Oil Produced (Mbbl)

Gas / Oil Ratio (Mcf/bbl)

Water Cut (%)

Time (Year)

OBGN008S:C9400A

Pre NOVA™ installation

Post NOVA™ installation

June. 17 - 18, 2014

2014 EuALF
KEY LEARNING AND RECOMMENDATIONS

- Instability can be caused by:
 - Poor gas lift design
 - Suboptimal lift gas injection
 - Low injection pressures
- Nova Venturi orifice valve can stabilize production
- Careful candidate screening is essential
- Venturi orifice must be sized for optimal lift gas injection
- Monitor THP and CHP trends to identify instability
CONCLUSION/GO FORWARD PLANS

- Nova orifice valve stabilized well production
- Venturi installation improved the efficiency of all 4 pilot wells
- About 700 bopd gain was recorded and sustained
- Standardise on Nova Venturi orifice
- Roll out in other fields.
Reserves: Our use of the term "reserves" in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term "resources" in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: our use of the term ‘resources plays' refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as “associated companies” or “associates” and companies in which Shell has joint control are referred to as “jointly controlled entities”. In this presentation, associates and jointly controlled entities are also referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2013 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 13 March, 2014. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.

June 2014
THANK YOU FOR YOUR ATTENTION!