ESP Technology Challenges for Ultra-Deepwater in Gulf of Mexico

EuALF 2014

Author: Carlos Lopez
Sr. Application Engineer C&P GOM
Agenda

- Lower Tertiary Trend Overview
- Reservoir Characteristics
- Objectives & Methodology
- Results Analysis
- ESP Completion Options
- Summary
The Value Proposition - Lower Tertiary Trend GOM

- Lower Tertiary is thought to contain 15 billion barrels of oil in reserves
- Current known extent is approx. 80 mi wide and 400 mi long
- LT consists of older geological period, more compact sediments
- High density crude with low GOR and bubble point
- Highly fractured reservoirs – rapid pressure depletion
- Reservoir pressure to 20,000 psi, Temperature to 300º F
Regional Discontinuity

Major depth shift across discontinuity

Graph courtesy MMS
Objectives

- Model anticipated Lower Tertiary reservoir to evaluate production potential
- Compare the production expectations to understand the economic viability of ESP completion design options
- Evaluate ESP challenges to meet the completion needs of Lower Tertiary wells
Methodology

- Nodal Analysis - Petroleum Experts Prosper® Software
- ESP Production Modeling - Baker Hughes’ AutographPC®
- Compare various reservoir performance characteristics
Natural Flow Scenario

- No Subsea Boosting
- No In-Well ESP
- 250 psi Separator Pressure
- Step out 14 Miles
- Water depth 8,000 ft
- Flowline ID 6”
- Productivity Index (PI) of 1.0 to 3.0 bpd/psi
Subsea Booster Pump Scenario

- Subsea Boosting
- No In-Well ESP
- 1,250 psi Min. Subsea Tree Pressure
- PI = 1.0 to 3.0 bpd/psi
Combined Artificial Lift Scenario

- Near-Reservoir ESP, maximizing reservoir drawdown
- Subsea Boosting
- 1,250 psi Min. Subsea Tree Pressure
- 1,250 psi minimum Pump Intake Pressure
- PI of 1.0 to 3.0 bpd/psi
Reservoir Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth</td>
<td>ft</td>
<td>8,000</td>
</tr>
<tr>
<td>Reservoir Depth (TVD)</td>
<td>ft</td>
<td>28,000</td>
</tr>
<tr>
<td>Reservoir Temperature</td>
<td>°F</td>
<td>275</td>
</tr>
<tr>
<td>Initial Reservoir Pressure</td>
<td>psi</td>
<td>20,000</td>
</tr>
<tr>
<td>Water cut</td>
<td>%</td>
<td>30</td>
</tr>
<tr>
<td>Permeability</td>
<td>md</td>
<td>10</td>
</tr>
<tr>
<td>Productivity Index</td>
<td>bpd/psi</td>
<td>1.0 - 3.0</td>
</tr>
<tr>
<td>Oil Viscosity</td>
<td>cP</td>
<td>3</td>
</tr>
<tr>
<td>Oil API gravity</td>
<td>°API</td>
<td>28</td>
</tr>
<tr>
<td>Bubble point Pressure</td>
<td>psi</td>
<td>1,250</td>
</tr>
<tr>
<td>Gas Oil ratio (GOR)</td>
<td>scft/sbbl</td>
<td>250</td>
</tr>
</tbody>
</table>
Production Profile PI=3 bpd/psi

Drawdown limited to 5,000 psi

5,200 bpd @ 6,000 psi

Reservoir Pressure (psi)

ESP to SSB SSB Nat Flow
Production Profile PI=2 bpd/psi

Drawdown limited to 5,000 psi

Reservoir Pressure (psi)

Production Rate (bpd)

ESP to SSB SSB Nat Flow

3,500 bpd @ 6,000 psi
Production Profile \(\text{PI}=1 \ \text{bpd/psi} \)

- **Natural Flow**
- **Subsea Booster Pump**
- **In-Well ESP**

Drawdown limited to 5,000 psi

- 0 bpd
- 1,800 bpd @ 6,000 psi

Reservoir Pressure (psi)

- ESP to SSB
- SSB
- Nat Flow

© 2014 Baker Hughes Incorporated. All Rights Reserved.
ESP Pump Performance

![Graph showing ESP Pump Performance with Intake Flow Rate (bpd) vs. TDH (ft). The graph includes data points for PI 2 bpd/psi and PI 1 bpd/psi.]
ESP Completion Options

- **Deployment Multiple ESP Systems to Maximize Time Between Interventions**
 - Design Completion to avoid interventions for at least 8 to 10 years
 - Use Conventional Drilling Rig Intervention with a Riser

- **Coiled Tubing Deployed ESP System to Minimize Time and Cost for an Intervention**
 - Design Completion to keep Intervention Time at 30 Days or less
 - Use Emerging Medium Intervention Vessel Technology
Deployment Multiple ESP Systems
Challenges

- Production casing larger than standard GOM
- ESP CAN/Pod must be large
- Tubing hanger design
- Subsea Tree ESP power penetrator design
- CAN/Pod hanger design for high pressure
- ESP CAN power penetrator design
- Automatic diverter valve design for high volume
- ESP pump design for widest production range
- ESP qualification for extremely high pressure
- High pressure completion components:
 - Safety Valve
 - Reservoir isolation Barrier valve
 - Chemical Injection system
Coiled Tubing Deployed ESP System Challenges

- Coiled Tubing Hanger design
- Production Tubing Hanger design
- SubseaTree ESP power penetrator
- CT with Power Cable technology limits to 10,000 ft
- CT collapse pressure limitations
- ESP pump design for widest production range
- ESP qualification for extremely high pressure
- Length and weight of the ESP system
- Coiled tubing size
- Bypass Valve Design
- High pressure completion components:
 - Deepset Safety Valve
 - Reservoir isolation Barrier valve
 - Chemical Injection system
Summary

- Available reserves will keep the GoM as one of the world’s premier oil and gas basins for the oil industry.
- Sensitivity analyses for LTT shows that potential oil increase per well would be more than 50% over the life of the field by adding an ESP along with the SSB system.
- Deployment of multiple ESP systems is the conventional approach which has previous and successful run history. The current technology should be adapted to this application.
- CT deployed ESP systems in subsea and deepwater applications would be challenging and development of the components would require extensive engineering time, testing and qualification.
Acknowledgements

Andres Cardona
Applications Engineering Advisor
Baker Hughes, Gulf of Mexico Region

Raymond O’Quinn
Project Manager
Baker Hughes, Gulf of Mexico Region
Questions

Carlos Lopez
Baker Hughes, Gulf of Mexico
carlos.lopez2@bakerhughes.com