Downhole Oil & Water Separation
A New Start

Presenter: Ed Sheridan
Baker Hughes
SubSep - Downhole Oil & Water Separation

- Summary of Previous Experience
- What has changed?
- New Design
- China Application
- China Design
- China Performance
- System operation
- Technical Requirements
- Keys to Success
Previous Completion Design

Key Issues:

• Non-standard ESP design with 2 pumps on 1 motor

• Not able to use ESP monitoring systems due to motor position

• No method for verifying what was being injected

• By-pass tubing used for feed to upper pump
What has changed?

The table highlights the key differences between the previous systems & the new design & how it mitigates some of the risks:

<table>
<thead>
<tr>
<th>Previous SubSep Installations</th>
<th>Risk</th>
<th>New SubSep Completion Design</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single system comprising one motor driving 2 pumps</td>
<td>![Old Risk]</td>
<td>Two separate systems, sized for range of expected duties</td>
<td>![New Risk]</td>
</tr>
<tr>
<td>Both pumps running at same frequency</td>
<td>![Old Risk]</td>
<td>Each system, independently controllable</td>
<td>![New Risk]</td>
</tr>
<tr>
<td>No means of monitoring exactly what is being injected</td>
<td>![Old Risk]</td>
<td>Sample line to surface to allow testing of injection water</td>
<td>![New Risk]</td>
</tr>
<tr>
<td>Monitoring only on ESP system for protection & optimization</td>
<td>![Old Risk]</td>
<td>Monitoring on ESPs & additional monitoring on intake & discharge of the subsep</td>
<td>![New Risk]</td>
</tr>
<tr>
<td>Subsep design involved by-pass tubing on outside of the hydrocyclone to direct flows as required</td>
<td>![Old Risk]</td>
<td>Subsep will be supplied as a "ready-made" sub-assembly with all internal plumbing pre-installed & protected inside the housing with "plug & play" design for install crew</td>
<td>![New Risk]</td>
</tr>
<tr>
<td>Special design due to two pumps running off of one motor utilizing non-standard additional components</td>
<td>![Old Risk]</td>
<td>Utilizes standard equipment as already in operation for dual wells with only addition of the SubSep hydrocyclone & associated monitoring</td>
<td>![New Risk]</td>
</tr>
<tr>
<td>Utilized standard well head & tubing hanger</td>
<td>![Old Risk]</td>
<td>Requires additional TEC wire penetration through the tubing hanger to allow SubSep monitoring</td>
<td>![New Risk]</td>
</tr>
</tbody>
</table>
New Design - Philosophy

- To address the concerns raised & lessons learned from previous installations
- To simplify the SubSep system & completion design
- To keep the ESP part of the completion the same whether the Injection Zone is above or below the Production Zone
- Keeping ESP section the same would allow a standardized control & operation methodology to be developed.
- Wherever possible, use only standard equipment already commonly in use for ESP completions
- Update the SubSep hydrocyclone to a “plug & play” design
- Use a Sample Line to verify separation efficiency
New Design - System Schematic

FROM RESERVOIR

DOWNHOLE

- Lower ESP
- SubSep (Separated Water)
- Upper ESP

SURFACE

- Chemical Injection
- Control & Monitoring
- VSD (Lower)
- VSD (Upper)

FLOW PATHS

- Oil Rich Stream
- Surface Choke
- To Production
- To Test Separation efficiency
- Sample Line
System Operation

- Fluid from Production Zone flows into the lower ESP and then on to the SubSep at required pressure.
- Separated Water stream directed to the injection zone above the Production Zone.
- Separated oil rich fluid is forced to the Upper ESP which is used to produce to the surface.
- Injection stream water can be sampled at surface or flow direction can be reversed for chemical injection.
System Operation

- System uses 2 independently controlled ESPs on 2 Variable Speed Drives
- Allows control over a wide range of PI & II conditions
- Allows control of water split between Injection Zone & Surface to maximize separation efficiency
- Sample line can also be used for chemical injection into the disposal zone
- Full monitoring capability included
How does SubSep work?

Performance Example:
10,000 bfpd well with 90% water cut & separating 8,000 bwpd to injection zone

<table>
<thead>
<tr>
<th></th>
<th>BFPD</th>
<th>BWPD</th>
<th>BOPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produced Fluid</td>
<td>2,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Injected Fluid</td>
<td>8000</td>
<td>8000</td>
<td>< 500 ppm</td>
</tr>
<tr>
<td>Well Fluid</td>
<td>10000</td>
<td>9000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Technical Requirements

Need to have:

• Casing ≥ 7” 26#
• Water cut ≥ 85%
• Good well data available for injection & production zones – vital for success
• Density differential ≥ 10% of Oil Sp. Gr.
• Clean Well – minimal to no solids

Recommended:

• Injectivity Testing
• Include the Sample Line
• 2 x Variable Speed Drive
• Adjustable surface choke
• Use of Downhole Monitoring systems
• BFPD ≥ 3,000 BPD
Well Selection is Critical

- Candidate Selection Issues: 43%
- Conventional Failures: 29%
- Other: 3%
- SubSep Failures: 25%
China Case Study

• Background – Operator in Bohai Bay, China
 – Faced with surface water constraints & pressure to reduce overboard dumping
 – Already using dual-can ESPs systems
 – Already injecting into the disposal zone via injector wells so good data / history available

• Solution – SubSep Downhole Separator with Dual ESPs
 – Added the SubSep & associated gauge into their standard completion
 – Installed Excluder screens at the Injection Zone
 – Injected chemicals at the inlet to the SubSep
China Bohai Bay Well Selection

• Water cut > 90%
• Oil rate > 300 bopd with the potential to maintain good flow rates for several years
• Downhole viscosity <10 cp and gravity as high as possible,
• ESP that had failed or was close to its target run life i.e. +/-2.5 years or longer
• Wellbore penetrates a good disposal or injection target and that can take up 10,000 bfpd with minimal injection pressure,
• Disposal or injection zone that is located below or near our pump setting depth but above the sand control packer.
• Well Completed in 9 5/8” 47# production casing
• A well which hadn’t produced excessive gas or solids
• Accessible with the platform based Workover rig
Selection Criteria

1. Water cut > 90%
2. Oil rate > 300 BOPD
3. API > 15 degs, Viscosity < 30cp
4. ESP run-life +/-2.5 years as of today.
5. Good disposal target with high Injectivity
6. No excessive gas or solids

<table>
<thead>
<tr>
<th>Production Zone</th>
<th>Well</th>
<th>Reservoir</th>
<th>WCT</th>
<th>Pi</th>
<th>Remaining Reserves (MMBO)</th>
<th>Oil API(Surface)</th>
<th>Viscosity(cp)</th>
<th>Pump Runtime (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NG3,below</td>
<td>94%</td>
<td>150</td>
<td>0.79</td>
<td>18</td>
<td>28.9</td>
<td>1530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NG3,above</td>
<td>93%</td>
<td>113</td>
<td>0.94</td>
<td>18</td>
<td>28.9</td>
<td>1450</td>
</tr>
<tr>
<td></td>
<td>1A-02H</td>
<td>NG2</td>
<td>93%</td>
<td>69</td>
<td>0.945</td>
<td>23.8</td>
<td>9.2</td>
<td>1780</td>
</tr>
<tr>
<td></td>
<td>1A-29H</td>
<td>NG2</td>
<td>93%</td>
<td>67</td>
<td>1.477</td>
<td>23.8</td>
<td>9.2</td>
<td>1725</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injection zone</th>
<th>Reservoir</th>
<th>Distance to production zone (TVD)</th>
<th>Perm I.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NG1</td>
<td>110</td>
<td>6058</td>
</tr>
<tr>
<td></td>
<td>NG1</td>
<td>105</td>
<td>1766</td>
</tr>
<tr>
<td></td>
<td>NG0</td>
<td>60</td>
<td>5269</td>
</tr>
<tr>
<td></td>
<td>NG0</td>
<td>55</td>
<td>2381</td>
</tr>
</tbody>
</table>
CFD 11-2A-17H

<table>
<thead>
<tr>
<th>Formation</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TVDRKB</td>
</tr>
<tr>
<td>Top Ng</td>
<td>1259.0</td>
</tr>
<tr>
<td>Top GPS2</td>
<td>1382.5</td>
</tr>
<tr>
<td>Top Ng2</td>
<td>1386.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>well name</th>
<th>Inf.</th>
<th>Perf. Interval (extended length)</th>
<th>Perf. Interval</th>
<th>Porosity</th>
<th>Perm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m TVDSS</td>
<td>m MD</td>
<td>Top Base</td>
<td>thickness</td>
</tr>
<tr>
<td>2A-17H</td>
<td>Ng0</td>
<td>1255 1304 49</td>
<td>1350 1431 81</td>
<td>31.5</td>
<td>5269</td>
</tr>
</tbody>
</table>
SUBSEP INLET

- Oil = 210 B/D
- Water = 10290 B/D
- Total = 10500 B/D
- W-Cut = 98.0%
- Pressure = 1761 psi

SUBSEP OVERFLOW

- Oil = 210 B/D
- Water = 1490 B/D
- Total = 1700 B/D
- W-Cut = 87.6%
- Overflow Split = 16.2%
- Pressure = 1317 psi

PRESSURE DROP BETWEEN OVERFLOW OUTLETS

- Vertical Separation = 10 feet
- Tubing OD = 0.75 inches
- # of Tubes = 1
- Oil API = 23.8
- Water Sp. Gr. = 1.01
- Total Viscosity = 0.5 cp
- Pressure Drop = 183 psi

SUBSEP #2

- PDR = 2.42
- Orifice = 4.91 mm
- # of Cyclones = 5
- Pr.-drop = 444 psi

SUBSEP #2 UNDERFLOW

- Depth = 3298 feet
- Oil = 0 B/D
- Water = 8800 B/D
- Total = 8800 B/D
- W-Cut = 100%
- Vol. Split = 83.8%
- Pressure = 1577 psi

Injection Tubing

- Tubing ID = 8.869 inches
- Press. Drop = 419 psi

INJECTION ZONE

- Depth = 4256 feet
- Static Pr. = 1836 psi
- Inj. Index = 55.0 B/D/psi
- Injection Press. = 1996 psi
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>95% 500 2865 85.14%</td>
<td>1656 1490 1924 1056</td>
<td>600 167 3.6</td>
<td>3.6 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>95% 500 2865 85.14%</td>
<td>1758 1591 2026 1157</td>
<td>600 167 3.6</td>
<td>3.6 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>95% 500 2865 85.14%</td>
<td>2232 2065 2500 1631</td>
<td>600 167 3.6</td>
<td>3.6 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>95% 500 1509 75.1%</td>
<td>1675 1508 1943 1228</td>
<td>447 167 2.68</td>
<td>2.68 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>95% 500 1509 75.1%</td>
<td>1796 1630 2064 1349</td>
<td>447 167 2.68</td>
<td>2.68 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>95% 500 1509 75.1%</td>
<td>2367 2200 2635 1920</td>
<td>447 167 2.67</td>
<td>2.68 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>95% 500 497 49.9%</td>
<td>1688 1521 1956 1355</td>
<td>334 167 2</td>
<td>2.00 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>95% 500 500 50.0%</td>
<td>1825 1658 2095 1492</td>
<td>333 167 1.99</td>
<td>2.00 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>95% 500 500 50.0%</td>
<td>2468 2301 3736 2134</td>
<td>334 167 2</td>
<td>2.00 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 2578 85.1%</td>
<td>1617 1481 1916 1128</td>
<td>488 136 3.6</td>
<td>3.6 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 2578 85.1%</td>
<td>1708 1572 2007 1219</td>
<td>488 136 3.6</td>
<td>3.6 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 2578 85.1%</td>
<td>2134 1998 2433 1646</td>
<td>488 136 3.6</td>
<td>3.6 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 1353 75.0%</td>
<td>1633 1497 1932 1269</td>
<td>364 136 2.68</td>
<td>2.68 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 1353 75.0%</td>
<td>1743 1607 2042 1379</td>
<td>364 136 2.68</td>
<td>2.68 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 1353 75.0%</td>
<td>2257 2121 2556 1893</td>
<td>364 136 2.68</td>
<td>2.68 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 461 50.6%</td>
<td>1645 1509 1944 1372</td>
<td>273 136 2.01</td>
<td>2.01 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 461 50.6%</td>
<td>1768 1632 2067 1495</td>
<td>273 136 2.01</td>
<td>2.01 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>95% 450 461 50.6%</td>
<td>2346 2210 2645 2073</td>
<td>273 136 2.01</td>
<td>2.01 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 2268 85.0%</td>
<td>1580 1472 1907 1195</td>
<td>385 108 3.58</td>
<td>3.58 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 2268 85.0%</td>
<td>1661 1554 1988 1276</td>
<td>385 108 3.58</td>
<td>3.58 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 2268 85.0%</td>
<td>2042 1934 2369 1657</td>
<td>385 108 3.58</td>
<td>3.58 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 1203 75.0%</td>
<td>1594 1487 1921 1306</td>
<td>289 108 2.68</td>
<td>2.68 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 1203 75.0%</td>
<td>1692 1584 2019 1403</td>
<td>289 108 2.68</td>
<td>2.68 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 1203 75.0%</td>
<td>2149 2041 2476 1860</td>
<td>289 108 2.68</td>
<td>2.68 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 410 50.6%</td>
<td>1605 1497 1932 1388</td>
<td>216 108 2.01</td>
<td>2.01 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 410 50.6%</td>
<td>1714 1607 2041 1498</td>
<td>216 108 2.01</td>
<td>2.01 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>95% 400 410 50.6%</td>
<td>2228 2120 2555 2012</td>
<td>216 108 2.01</td>
<td>2.01 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 1902 84.5%</td>
<td>1547 1465 1899 1257</td>
<td>290 83 3.5</td>
<td>3.5 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 1902 84.5%</td>
<td>1620 1537 1972 1330</td>
<td>290 83 3.5</td>
<td>3.5 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 1902 84.5%</td>
<td>1959 1876 2311 1669</td>
<td>290 83 3.5</td>
<td>3.5 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 1073 75.4%</td>
<td>1558 1476 1910 1335</td>
<td>224 83 2.7</td>
<td>2.7 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 1073 75.4%</td>
<td>1643 1561 1995 1420</td>
<td>224 83 2.7</td>
<td>2.7 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 1073 75.4%</td>
<td>2042 1959 2394 1818</td>
<td>224 83 2.7</td>
<td>2.7 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 358 50.6%</td>
<td>1568 1485 1920 1401</td>
<td>167 83 2.01</td>
<td>2.01 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 358 50.6%</td>
<td>1664 1581 2016 1497</td>
<td>167 83 2.01</td>
<td>2.01 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>95% 350 358 50.6%</td>
<td>2113 2030 2465 1947</td>
<td>167 83 2.01</td>
<td>2.01 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Update

Before workover:
• Total Fluid to surface: 7000bfpd @ 97.7%WC (6839 bwpd / 161 bopd)

Current status: Lower ESP Upper ESP
• Intake Pressure: 1371 psi No Data (1467* psi)
• Discharge Pressure: 2263 psi No Data (1637* psi)
• Freq: 60 Hz 56 Hz
• Rate: 11425 bfpd 2331 bfpd (2051 bwpd / 280 bopd)
• WC: 97.5% 88%

Injection Zone
• Pressure at start up: 1611 psi
• Pressure current: 2092 psi
• Oil Carry Over: 125 ppm
• Water injected: 9,094 bwpd

* Last data prior to 1 phase to grnd
Performance Update

SubSep Installed

Total Fluid to Surface (M3/d)
Total Water to Surface (M3/d)
Total Oil to Surface (M3/d)
Performance Update

SubSep Installed
CONTROL LOGIC

Operating Scenarios

• Changes in Stable Operations
 – Change in I.I.
 – Change in P.I.
 – Change in target production rate
 – Change in static reservoir pressure
 – Change in sample line p.p.m. (or loss of sample line)
 – Change in oil rich w/c

• Loss of Monitoring System
 – Loss of Lower ESP gauge
 – Loss of Upper ESP gauge
 – Loss of Injection Zone gauge

• Loss of ESP
 – Loss of Lower ESP requires completion to be pulled
 – Loss of Upper ESP modified Ops with reduced control possible.
Keys to Success

• Careful Selection of Candidate Well
• Partnership with operator
• Disposal Zone Understanding
 – Injectivity Index needs to be clearly understood with good data
• Separation System
 – Separator successfully installed and operating (Oil < 500 ppm)
 – Two stage separator available for further reduction in oil ppm.
 – Sample line to verify separation efficiency & allow optimization
• Completion Design
 – Good ESP design data for Application Engineering
 – Use of standard completion equipment & techniques
 – Use of Downhole Monitoring of all key parameters
 – Use of sand control to limit solids production
Don’t Just Count What is Produced: Produce What Counts!