The Subsea Sand Management Challenge: “What to do with the sand?”

Hank Rawlins, PhD, P.E.
hrawlins@eprocess-tech.com
Purpose & Outcome

Purpose
- Identify drivers for subsea facilities sand management
- Provide a focal point for discussion on subsea processing with focus on “What to do with the sand?”
- Identify and analyze conventional, unconventional, and unique options to reveal technology gaps

Outcome
- Approaches include neutralizing effects, improving conventional design, and separation with disposal
- Investigate technology analogues from other industries
- Improve hydrocarbon recovery through inclusionary production (SPE 164645)
12 Years of Progress

Top 5 Technology Needs
1. Seabed separation & disposal
2. Integrated subsurface/surface
3. Sand cleaning
4. More case studies/examples
5. Instrumentation
Produced Solids (Sand)

Inorganic, Insoluble, Particulate Material
- Not asphaltene, paraffin, wax, hydrate, or resin (organic)
- Not precipitates or scale (soluble or non-particulate)
- Sand - ISO 14688-1:2002 / ASTM D2487-83 (63-1700 µm)
- Solid particles that are separable in facilities equipment

Onshore Field, Austria

Deepwater South China Sea

OTC Asia 24705-MS
Natural Vs. Artificial Solids

Natural Solids
- Indigenous reservoir material
- High angularity, 25-150 μm median size, ~2650 kg/m³
- Low, steady-state, continuous production
- Failure mode – high concentration burst production

Artificial Solids
- From external intervention
- Frac sand, proppant, drill mud, cement fines, corrosion product, gravel pack, injection fines, etc.
- Higher s.g., rounder shape factor, larger avg. particle size
- Often handled as planned event

Sand and coal from Brent Delta 1996
Motivation for Sand Handling

Erosion
- Pipe components and valves

Filling
- Vessels, tanks, and low velocity zones

Interference
- Instruments/valves (plugging or range of motion)

Oil-in-Water Content
- May not be critical for subsea
Sand Management Paths

A. Conventional Approach
 • Manage solids production or system configuration using established rules or technology

B. Solids Treatment
 • Modify the solids, in-situ, to reduce or eliminate their deleterious effects

C. Solids Removal/Disposal
 • Separate solids from the well fluids and manage as separate flow stream
Sand Management Paths

CONVENTIONAL
- Downhole mechanical intervention
 - Reduce production below solids level
 - Reduce pipe velocity
- Erosion resistance materials
 - Manage erosion
 - Design
 - Pass through solids

TREAT SOLIDS
- Chemicals
 - Agglomerate
 - Partial/full dissolve
 - Modify shape
 - Coat particles
 - Core laminar flow
 - Modify flow path
 - Pipe in pipe design

REMOVE SOLIDS
- Desander Cyclone
 - Filters
 - Gravity
 - Inertia / Viscous trap
 - Inject into disposal well
 - Mechanical
 - Chemical
 - Clean & Seafloor discharge
 - Compress to puck
 - Containerize
 - Adhesive / cement
 - Grinding attrition
 - Ultrasomics
 - Disintegrate
 - Electrical discharge
 - Chemical dissolution
 - New flow stream
 - Dedicated pipeline
 - Contain / Pig line
 - Float to surface
 - Wellstream
 - Downhole
Technology Gaps

Reliable, known technology

Required to meet subsea demands

http://www.scanadu.com/
Manage solids production or system configuration using established rules or technology

A. CONVENTIONAL APPROACH
Exclusion or Flow/Material Design

Exclusionary Production
- Well completion equipment
- Reduce educe well output below sand production level

Flow Design
- Lower velocity in piping to minimize erosion
- Increase velocity to prevent solids from settling

Material Design
- Design components with manageable erosion or increase MOC for longer erosive life (material type or thickness)

Separate sand ahead of subsea system and reintroduce downstream
- Put solids back into production stream
- Put solids into disposed stream (i.e. water injection)
Modify the solids, in-situ, to reduce or eliminate their deleterious effects

B. SOLIDS TREATMENT
Effect of Sand Morphology on Erosion


```
<table>
<thead>
<tr>
<th>Description</th>
<th>F_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharp Corners, Angular</td>
<td>1.0</td>
</tr>
<tr>
<td>Semi-Rounded, Rounded Corners</td>
<td>0.53</td>
</tr>
<tr>
<td>Rounded, Spherical Glass Beads</td>
<td>0.20</td>
</tr>
</tbody>
</table>
```

Effect of Particle Size on Erosion

\[ER = 1.0 \times 10^{-9} \rho_w E(\theta) \]
\[E(\theta) = g(\theta)k(H\nu)^{k_1}\left(\frac{V_p}{V}\right)^{k_2}\left(\frac{D_p}{D}\right)^{k_3} \]
\[h \sim F_r e^{-\left(\frac{1}{d_p}\right)^{0.19}} \]

\(ER = \) erosion ratio (mass of particle/mass loss of target)

Threshold particle size:
20 microns methane and 100 microns water

Rapid decline

Particle Coating

Coat the particles and reintroduce into production stream
Reduce edge sharpness and increase sphericity (0.7-0.9)
Make particle soft/resilient to impact
Reduce net density (impact reduction and easier to carry)
Tech transfer from proppant production
Coating materials: phenolic, polyurethane, epoxy, wax
Inorganic coatings (patent): SbO$_3$, Bi, B$_2$O$_3$, CaBaF, Cu,
Graphite, In, PbO, PbS, MoS$_2$, ZnO

Coating Method (TBD): powder, liquid, reaction, precipitation
Partial/Full Chemical Dissolution

Dissolve to reduced particle shape or size

Inorganic Acid

\[SiO_2(s) + 6HF(l) \rightarrow H_2SiF_6(aq) + 2H_2O(l) \]

NaOH

\[SiO_2(s) + 2NaOH(l) \rightarrow Na_2SiO_3(aq) + H_2O(l) \]

Organic acids (citrate, oxalate, and pyruvate) increase dissolution rate 8-10X compared with water

Increasing temperature, and pressure both increase solubility of silica

Increasing cation concentration increases dissolution rate of quartz (\(Ba^{2+} \sim Na^+ \sim Ca^{2+} > Mg^{2+}\) where \(Ba^{2+}\) provides 114X rate compared to DI water)

Separate solids from the well fluids and manage as separate flow stream

C. SOLIDS REMOVAL/ DISPOSAL
Sand Separation Technologies

Screen/Filter

Cyclonic
- Desander, Inline, Auger

Rotodynamic

Gravity Settling

Pipe Trap

Subsea Wellhead Desander

Paper SPE 166118 Design of a Cyclonic Solids Jetting Device and Slurry Transport System for Production Systems

Particle Comminution

Grind sand to particle size below critical limit or to modify morphology
 • Ultra-fine grinding, attrition mill, vibratory tumbler
 • Employ methods from mining, ceramic, paint, paper, pharmaceutical, or other fine particle industries

Mechanical comminution
 • Ring & puck mill, disc pulverizer, oscillating mill, micro-powder mill, high-press grinding mill

Media methods
 • Planetary, vibratory, or stirred mill

Non-moving parts methods
 • Jet mill, ultrasonic wet-milling, electric pulse discharge
Comminution Equipment

- Metso Stirred Media Detritor
- Hielscher ultrasonic processor
- Ring & Puck Mill
- Disc Pulverizer
- Sturtevant Micronizer® Jet Mill

Breakage of Rocks by Pulsed Electric Discharge at Elevated Pressures and Temperatures

Y. F. Yazhova, R. R. Gafarova, S. Yu. Datskevicha, M. Yu. Zhurkova, V. V. Lopatina, V. M. Muratovb, and B. Jefferysb

a High-Voltage Research Institute, Tomsk Polytechnic University, Tomsk, 634028 Russia
b Schlumberger Cambridge Research Center, Cambridge CB3 0EL, United Kingdom
*e-mail: muratov@hvd.ipu.ru
Received November 24, 2010
Particle Consolidation

Consolidate particles into solid or semi-solid shape, for ease of carrying or “contained” seafloor disposal

- Compress into puck (mechanical densification)
- Add adhesive polymer an extrude
- Add cement to make brick

[Images of particle consolidation and equipment]

http://www.mechanicalengineeringblog.com/tag/cement-extrusion/
Containerize

Collect into...

- bag/tube/flexible-container
- pig and send up pipeline
- vessel/bin and retrieve by ROV or wireline
- vessel/bin and float to surface

http://freeassociationdesign.wordpress.com/2012/01/24/21st-century-sand-bags/

http://www.subsalve.com/

http://en.wikipedia.org/wiki/Pigging
Sand Cleaning

Mechanical (agitation)
- Recirculation loop with cyclones, slop oil slurry cleaning, beach sand cleaning

Chemical
- Dispersant, biological, detergent

Thermal

[Image of cleaning system for BP Venezuela 1997]

Inlet and sand/water outlet from cleaning loop along with analysis method

[Image of cleaning process]

Slurry Fracture Injection

Solids injection into disposal reservoir
- Used significantly for drill cuttings
- OnePetro papers and SPE Monograph
- Typically batch process

Deoiler/desander system with solids disposal via slurry fracture injection for Chevron on Barrow Island (2008)

INSTALLED SYSTEMS SUMMARY AND RECOMMENDATIONS

RPSEA Report 09121-3100-01, 24-Apr-12, RPSEA Ultra Deep Water Disposal of Produced Water &/or Solids at the Seabed
Rated solids handling for subsea at TRL 3
 • Used 100 ppm inlet design at 700 lbs/day

Disposal requirements
 • Selected locations at 1 wt.% oil on dry solids
 • U.S. does not allow solids discharge
 • Water injection quality at <5 ppmv and < 2 microns

Recommendations
 • Put sand into retrievable containers (7.8.3)
 • Add back to oil stream (7.10.2)
 • Manage through velocity
RPSEA: Installed Systems Summary

Petrobras Marimba, Congro, Malhado, Corvina, Canapu and Shell BC-10, Perdido
- G/L, sand flows with liquid to surface

Total Pazflor
- G/L, sand flows with liquids, backup sand flushing arrangement

Statoil Troll C
- Sand flows with injection water

Statoil Tordis
- Sand jetting to desander to injection well (after pump), but changed to flowing to surface

Petrobras Marlim
- Sand removed pre-separator, sand jetting, produced water desander, sand put back into oil line
Conclusions

Subsea Processing Requires Sand Management
- All wells produce sand

No New Equipment Required for Separation
- Proven equipment available topsides
- Packaging for deepwater use needed

Solids Handling Main Concern
- Erosion, filing, interference, or oil-in-water
- Neutralize, improve conventional design, separate/disposal
- Primarily manage through velocity
- Separation with injection: flow-line, w/water, or discrete reservoir
- Containerize a viable option

Closing Technology Gaps
- Coordination between major stakeholders
- Cooperative development approach
- Qualified experienced innovative partners
THANK YOU / QUESTIONS?