Particle Size Distribution Measurement Techniques and Their Relevance or Irrelevance to Sand Control Design

Presented by: Rajesh A. Chanpura, Schlumberger

SPE 168152-MS

Authors: Ke (Cathy) Zhang, Rice University; Rajesh A. Chanpura, Schlumberger; Somnath Mondal, Chu-Hsiang Wu, and Mukul M. Sharma, The University of Texas at Austin; Joseph A. Ayoub and Mehmet Parlar, Schlumberger
Outline

• Literature Review

• Current Work
 – Calibration
 – Effect of sampling and particle shape; crossover of PSD
 – Generating samples for sand retention test
 – Sand retention test result and comparison with model prediction

• Conclusions
Dry Sieve Analysis

![8” Diameter Test Sieve](image)

U.S. Mesh Size

<table>
<thead>
<tr>
<th>U.S. Series Mesh Sizes</th>
<th>Sieve Opening (in)</th>
<th>Sieve Opening (mm)</th>
<th>U.S. Series Mesh Sizes</th>
<th>Sieve Opening (in)</th>
<th>Sieve Opening (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0.315</td>
<td>8.000</td>
<td>35</td>
<td>0.0197</td>
<td>0.500</td>
</tr>
<tr>
<td>3</td>
<td>0.265</td>
<td>6.730</td>
<td>40</td>
<td>0.0165</td>
<td>0.420</td>
</tr>
<tr>
<td>3.5</td>
<td>0.223</td>
<td>5.660</td>
<td>45</td>
<td>0.0138</td>
<td>0.351</td>
</tr>
<tr>
<td>4</td>
<td>0.187</td>
<td>4.760</td>
<td>50</td>
<td>0.0117</td>
<td>0.297</td>
</tr>
<tr>
<td>5</td>
<td>0.157</td>
<td>4.000</td>
<td>60</td>
<td>0.0098</td>
<td>0.250</td>
</tr>
<tr>
<td>6</td>
<td>0.132</td>
<td>3.360</td>
<td>70</td>
<td>0.0083</td>
<td>0.210</td>
</tr>
<tr>
<td>7</td>
<td>0.111</td>
<td>2.830</td>
<td>80</td>
<td>0.0070</td>
<td>0.177</td>
</tr>
<tr>
<td>8</td>
<td>0.0937</td>
<td>2.380</td>
<td>100</td>
<td>0.0059</td>
<td>0.149</td>
</tr>
<tr>
<td>10</td>
<td>0.0787</td>
<td>2.000</td>
<td>120</td>
<td>0.0049</td>
<td>0.124</td>
</tr>
<tr>
<td>12</td>
<td>0.0661</td>
<td>1.680</td>
<td>140</td>
<td>0.0041</td>
<td>0.104</td>
</tr>
<tr>
<td>14</td>
<td>0.0555</td>
<td>1.410</td>
<td>170</td>
<td>0.0035</td>
<td>0.088</td>
</tr>
<tr>
<td>16</td>
<td>0.0469</td>
<td>1.190</td>
<td>200</td>
<td>0.0029</td>
<td>0.074</td>
</tr>
<tr>
<td>18</td>
<td>0.0394</td>
<td>1.000</td>
<td>230</td>
<td>0.0024</td>
<td>0.062</td>
</tr>
<tr>
<td>20</td>
<td>0.0331</td>
<td>0.840</td>
<td>270</td>
<td>0.0021</td>
<td>0.053</td>
</tr>
<tr>
<td>25</td>
<td>0.0280</td>
<td>0.710</td>
<td>325</td>
<td>0.0017</td>
<td>0.044</td>
</tr>
<tr>
<td>30</td>
<td>0.0232</td>
<td>0.589</td>
<td>400</td>
<td>0.0015</td>
<td>0.037</td>
</tr>
</tbody>
</table>
Laser Particle Size Analysis (LPSA)
Dry Sieve Analysis vs. LPSA

<table>
<thead>
<tr>
<th>Dry Sieve Analysis</th>
<th>LPSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical separation of particles</td>
<td>Measurement of degree of scatter of laser</td>
</tr>
<tr>
<td>A minimum of ~ 20 gram of sample</td>
<td>< 1 gram of sample</td>
</tr>
<tr>
<td>Particle size down to 37 µm</td>
<td>Particle size over a range of 0.5 µm to 2000 µm</td>
</tr>
<tr>
<td>Measures the second smallest dimension</td>
<td>Estimates the equivalent diameter of sphere of same volume</td>
</tr>
</tbody>
</table>
Differences in PSDs from Sieve and Laser Analyses

SPE 54745
Possible Causes of Differences in PSDs from Sieve and Laser Analyses

• Particle Shape
 – Sieve and LPSA tend to report different sizes for non-spherical particles

• Sample Size
 – LPSA uses < 1 g of sample
 • Representative enough compared to sample size in sieve analysis?

• Clay Content/Type
 – In LPSA, results are sensitive to the fluid used for reactive shales

• Fine Particles
 – In sieve analysis, fine particles can adhere to the surface of larger particles
 • Could this result in crossover of sieve and laser PSDs?
Glass Beads PSD

- Synthetic glass beads
- Perfect spheres
- Particles not too big (< ~ 1 mm)
- Particles not too small (> 32 µm)
- Inert particles (not swelling/reactive, etc.)
Effect of Sampling: Sample Splitter Can Produce Representative LPSA Fraction

PSD of Random LPSA Sample

- Cumulative % Retained
- Particle Size, μm

PSD of Split LPSA Sample

- Cumulative % Retained
- Particle Size, μm

Sample Splitter
Effect of Particle Shape on PDS

Prolate Spheroid

\[a = b < c \]

LPSA always predicts larger particle size than sieve

Tri-axial Ellipsoid

\[a < b < c \]

- If \(b < \sqrt{ac} \)
 - LPSA gives a larger size
- If \(b > \sqrt{ac} \)
 - Sieve gives a larger size
- If \(b = \sqrt{ac} \)
 - Sieve and LPSA give the same size
Effect of Particle Shape on PSD

- Prolate Spheroid Particles
- Cylindrical Particles
- Square Pyramid Shape Particles
- Conical Particles
Crossover of PSDs from Dry Sieve and Laser Analyses

Spheroid Particles: Aspect Ratio = 2

Square Pyramid Shape Particles: Aspect Ratio = 0.5

Spheroid + Square Pyramid Shape Particles

6th European Sand Management Forum (Aberdeen, UK) | March 26-27, 2014
PSD of CaCO$_3$ and Silica Particles

PSD of Calcium Carbonate Particles

- Dry Sieve
- LPSA

PSD of Silica Particles

- Dry Sieve
- LPSA

PSD of Calcium Carbonate and Silica Particles

- Dry Sieve
- LPSA
Large Difference between Dry Sieve and Laser Analyses in 200 to 400 microns

PSD of Calcium Carbonate, Larger Silica and Smaller (< 62 μm) Silica Particles

Cumulative % Retained

Particle Size, μm

- Dry Sieve
- LPSA
- Slot Size (250 μm)
Estimated vs. Measured PSDs of Mixture of CaCO3, Larger Silica and Smaller (< 62 microns) Silica Particles

Dry Sieve

LPSA

Cumulative % Retained

Particle Size, μm

1. Calculated
2. Measured

Cumulative % Retained

Particle Size, μm

1. Calculated
2. Measured
Sand Retention Test: Slurry vs. Prepack Test

<table>
<thead>
<tr>
<th></th>
<th>Slurry Test</th>
<th>Prepack Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulates</td>
<td>Gradual Failure</td>
<td>Hole Collapse</td>
</tr>
<tr>
<td>Concentration</td>
<td>Low (< 1%)</td>
<td>High (~ 50%)</td>
</tr>
<tr>
<td>Pack Forms</td>
<td>During Test</td>
<td>Start of Test</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Size Exclusion Only</td>
<td>Size Exclusion + Bridging</td>
</tr>
</tbody>
</table>

- Started with Slurry Test
 - Analytical model for sand production prediction
 - Laminar flow
 - Anticipate sieve analysis to give a more relevant result
Estimated vs. Experimental Sand Production at 250 μm WWS

<table>
<thead>
<tr>
<th>PSD</th>
<th>Experimental Sand Production (lb/ft²)</th>
<th>Estimated Sand Production (lb/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spherical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Square Pyramid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conical</td>
</tr>
<tr>
<td>Sieve</td>
<td></td>
<td>0.210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.187</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.147</td>
</tr>
<tr>
<td>LPSA</td>
<td>0.172</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>0.030</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Average Aspect Ratio = 1.39
Methodology of PSD Analysis: Slurry Test

Observe Under the Microscope

Particle Shape, Particle Size Range, Mineralogy

Preferred Technique: Sieve Analysis

Not Enough Sample & Good Sphericity

Dry Sieve PSD

LPSA PSD

Aspect Ratio

LPSA Fluid

Mineralogy

Dynamic Image Analysis

Simulation Model

Estimated Sand Production

X-Ray Diffraction

Simulation Model

Estimated Sand Production
Conclusions

• Possible causes for differences in PSDs from dry sieve and laser analyses
 – Aspherical shape
 • Crossover can occur strictly due to the shape of the particles
 – Particle sampling
 – LPSA fluid, different obscuration levels in LPSA, etc.
 • PSD crossover can be explained by reasons other than particle sticking
• For slurry tests, dry sieve is the relevant technique for PSD
• For prepack tests, more work needs to be done
• Initial evaluation of particle shape, size range and mineralogy using microscope is recommended before dry sieve or laser measurements
Thanks!
Questions?